Simulating financial outcomes with Excel

Abstract

This spreadsheet demonstrates how you can run simulations with Excel. There are addins available that can do a lot more than this spreadsheet, however the price is right for this one. The first two sheets (Example 1 and 2) show you how to create distribution of the variables that you want to simulate. It demonstrates two ways to do this. Either by using a built distribution (there quite a number) directly or by using a lookup function to find the appropriate values. Both use the probablity of an event to compute the using a built distribution (here quite a nu

The third sheet (Analysis) uses a two custom functions and lookups to create a free cash flow statement. In addition it also calculates a single probability of a lawsuit, The last sheet (Result) is used to simulate the IRR of the cash flows given a distribution of market share and price. Look at the formula in Z23 which computes the IRR if one exists, if one does not it set a code (-2) and it also check to make sure we did not lose the lawsuit.

In the random number generation the $A B S()$ function is used to insure that the random number is positive. This was done because the current release of Excel 2003 can at times generate a negative number. There is an explanation and a hotfix for it at the links given below. If you know that you do not have this problem you can remove the $A B S()$ functions, this will spend up the process somewhat. Also if you remove the example sheets (1 and 2) this will also speed up the simulation since all are recalculate everytime the simulation is run

Random Number information

http://support.microsoft.com/default.aspx?kbid=834520
http://support.microsoft.com/default.aspx?scid=kb;en-us;833855

You can see the results by pushing F9 (in fact anything you do that involves a recalculation will simulate)
This would simulate outcomes from the Standard Normal Distribution
Random Number
Deviate
This example is the easiest since it just uses the built in normal density functions
1E-05 -4.265 $\begin{array}{lll}0.01 & -2.326 \\ 0.03 & -1.881\end{array}$ $\begin{array}{lll}0.03 & -1.881 \\ 0.05 & -1.645\end{array}$ $\begin{array}{lll}0.05 & -1.645 \\ 0.07 & -1.476\end{array}$ $0.09-1.341$ $\begin{array}{ll}0.11 & -1.227 \\ 0\end{array}$ $0.13-1.126$ $\begin{array}{lll}0.15 & -1.036 \\ 0 & 17 & -0.954\end{array}$ $\begin{array}{ll}0.19 & -0.878\end{array}$ $0.21-0.806$ $\begin{array}{lll}0.23 & -0.739\end{array}$ $0.25-0.674$ $0.27-0.613$ $0.29-0.553$ $\begin{array}{rr}0.31 & -0.496 \\ 0.33 & -0.44\end{array}$ $\begin{array}{lll}0.35 & -0.385\end{array}$ $\begin{array}{ll}0.37 & -0.332 \\ 0.35\end{array}$ $\begin{array}{lll}0.39 & -0.279 \\ 0.0 .352\end{array}$ $\begin{array}{lll}0.37 & -0.279 \\ 0.41 & -0.228 \\ 0\end{array}$ $\begin{array}{lll}0.43 & -0.176 \\ 0\end{array}$ $\begin{array}{lll}0.45 & -0.126 \\ 0.47 & -0.075\end{array}$ $0.49-0.025$ $0.51 \quad 0.025$ $0.53 \quad 0.075$ $0.55 \quad 0.126$ $\begin{array}{ll}0.57 & 0.176\end{array}$ $\begin{array}{ll}0.59 & 0.228 \\ 0.61 & 0.279\end{array}$ $\begin{array}{ll}0.63 & 0.332\end{array}$ $\begin{array}{ll}0.65 & 0.385\end{array}$ $\begin{array}{ll}0.67 & 0.44\end{array}$ $\begin{array}{ll}0.69 & 0.496 \\ 0.71 & 0.553\end{array}$ $\begin{array}{ll}0.71 & 0.553\end{array}$ $\begin{array}{ll}0.73 & 0.613\end{array}$ $\begin{array}{ll}0.75 & 0.674 \\ 0.77 & 0.739\end{array}$ $0.79 \quad 0.806$ $\begin{array}{ll}0.81 & 0.878\end{array}$
$\begin{array}{ll}0.83 & 0.954 \\ 0.85 & 1.036\end{array}$ $\begin{array}{ll}0.85 & 1.036 \\ 0.87 & 1.126\end{array}$ $\begin{array}{ll}0.87 & 1.126 \\ 0.89 & 1.227\end{array}$ $\begin{array}{ll}0.89 & 1.227 \\ 0.91 & 1.341\end{array}$ $\begin{array}{ll}0.91 & 1.341 \\ 0.93 & 1.476\end{array}$ $0.95 \quad 1.645$ 0.971 .881 $0.99 \quad 2.326$
$\begin{array}{rl}1 & 4.265\end{array}$

Mean 25
Rand Number Units Sold 0.211742282 16 <==

This example uses normal density function but looks up the value use Vlookup
$=$ VLOOKUP(H7,C11:D44,2,TRUE)

Once you have completed the model go	
Table of Outcomes	
Cumulative Probability	Market S
0.00000	
0800	0.0
${ }^{0.38000}$	0.09
	${ }_{0}^{0.09}$
${ }_{0}^{0.20200}$	

This she looknp tuncion tor maxete picice

The Lawswit:

 0.472282621

The FCF Model
 12.00%
s.00\%
2000
3.0.0\%

Here is an example of a run that produced an eror (fNum)

is is the cell you select

 point top when youimulation (\$2s23).

Simulation Result for:
Number of Runs

Averag

Max
Variance
Std Deviation
Simulation Sheet Cell Addr: \$

Value

Simulation Data starts

The values from here are updated when you run the simulattion. It only uses the data down to cell address listed above. The rest of the data is iqnored

The Example Project
1000 Address Value You should probably not edit the blue text on
0.015741295 b1009 this sheet. You can delete the graph and black simuation. You can also edit the graph if you wish. Be sure to copy and save it, since it will machine used for testing. A 1000 can be run in about 2 achine used for testing. A 1000 can be run in about 2 results may well vary. You should be able to estimate the time by watching the progress bar.
0.830859092 See below for NA impact This is the frequency distribution of outcomes

Formula: =IF(T46=0,(+AA201-(Z20)-1),IF(ISERROR(IRR(Z20:AE20,AC5))=TRUE,-2, Bin Number Bin Frequency

0.335483557	Range	3.15	0

$\begin{array}{lll}0.328275326 & \text { Rin Size } & 0.16\end{array}$

0	-2	128
1	-1.842300963	0
2	-1.684601925	0
3	-1.526902888	0
4	-1.369203851	0
5	-1.211504813	0
6	-1.053805776	0
7	-0.896106739	5
8	-0.738407701	4
9	-0.580708664	5
10	-0.423009627	0
11	-0.265310589	1
12	-0.107611552	13
13	0.050087486	132
14	0.207786523	181
17	0.36548556	194
18	0.523184598	100
19	0.680883635	120
18	0.838582672	71
19	0.99628171	36
20	1.153980747	0
21	1.311679784	10

Date and Time 2/31/2004 4:42:26 PM
The Example Project

Adjusted for Missing Values	
Average	0.311629925
Maximum	1.153980747
Minimum	-1.0086
Variance	0.547877811
Std Deviation	0.740187686
Number	872
Missing	128
Total	1000

